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Parity Results for Certain Partition Functions 
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Theta Function Identities 
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Dedicated to Daniel Shanks on his seventieth birthday 

Abstract. In this paper we give a collection of parity results for partition functions of the form 

n E=- S -00 

and 

[1 (1 -Xn)-- (Xe(n) + Xf(n)) (mod 2) 
nES -00 

for various sets of positive integers S, which are specified with respect to a modulus, and 
quadratic polynomials e(n) and f(n). Several identities similar to theta function identities, 
such as 

00 00 

(1 - xn) = 1 + E (-n)n(xn2 + X2n2) 
n= 1 n=1 

n ?(4,6,8, 10) (mod 32) 

and its associated congruence 
00 00 

(1-xn)1 1 + E (x2 + x2n2) (mod2), 
n=1 n=1 

n O, +2, +12, +14,16 (mod32) 

are also proved. 

1. Introduction. The question of determining the parity of the partition function 
p(n) was raised by S. Ramanujan [7, pp. 1087, 1098], but has never been satisfacto- 
rily settled (see [6], [10]). Parkin and Shanks [8] have studied this question computa- 
tionally and it is reasonable to conjecture on the basis of their statistical results that 
p(n) is odd half the time. 

Even though there is no simple formula known that gives the parity of p(n), exact 
formulas do exist for other partition functions whose parts are the members of 
certain residue classes of a given modulus. In [1] two such results were established, 
namely: 

00 

(1) 1 (1 _ 
n)-1 

= 'Xe(n) (mod2) 
n E S -00 

Received March 4, 1986; revised April 25, 1986 and June 25, 1986. 
1980 Mathematics Subject Classification. Primary 10A45, 05A19. 
Key words and phrases. Partition function parity, theta function analogues. 

?1987 American Mathematical Society 

0025-5718/87 $1.00 + $.25 per page 

29 



30 RICHARD BLECKSMITH, JOHN BRILLHART, AND IRVING GERST 

for S= {n e N: n ? (2,3,4,5,6,7) (mod20)}, e(n) = n(5n + 1)/2 and S= 
{n E N: n +(1,2,5,6,8,9) (mod20)}, e(n) = n(5n + 3)/2 respectively. (See 
entries 4 and 5 in Table 1 below.) 

In this paper we present a collection of parity results (obtained by using the 
methods discussed in [1]), which have been discovered over the last two years on an 
IBM Personal Computer and the Data General Eclipse S/230 at the Mathematics 
Department of the University of Arizona (see [2]). 

2. Parity Results. In Table 1 we list results of the form (1). These can be proved 
using the Jacobi triple-product formula [5, p. 283] 

00 00 

fi (1 - Xn) = E ( Xl)n~rn2+sn n=1 -o00 
n=O, ?(r-s)(mod2r) 

by the same method used in proving Theorem 7.1 in [1]. (Entries 1 and 2 in Table 1 
are well known and are given for completeness.) 

TABLE 1 

Parity Results of the First Kind 

S e(n) 

1. n 1 (mod2) n(3n + 1)/2 
2. n O (mod4) n(2n + 1) 
3. n 0,? 3(mod12) n(3n +2) 
4. n 0, +1, ? 8, + 9, 10 (mod 20) n(5n + 1)/2 
5. n 0, 3,+ +4, ?7, 10(mod20) n(5n + 3)/2 

Table 2 contains a collection of results of the form 
00 

(2) 1 (1X-n)- _ E (Xe(n) + xf(n)) (mod 2). 
n e S -00 

TABLE 2 

Parity Results of the Second Kind 

S e(n) f(n) 
1. n X 0,? 1 (mod8) n(12n + 5) (3n + 1)(4n + 3) 
2. n 0, ? 3 (mod 8) n(12n + 1) (3n + 1)(4n + 1) 
3. n 0, ?+2 (mod 10) n(15n + 7)/2 (3n + 2)(5n + 1)/2 
4. n 0, ?+4 (mod 10) n(15n + 1)/2 (3n + 1)(5n + 2)/2 
5. n 0, ? 3, ?4(mod12) 9n2 (3n + 1)2 
6. n # 0, ?1, ?12, +13, 14(mod28) n(21n + 5)/2 (3n + 1)(7n + 3)/2 
7. n # 0, ?3, ?8, ?11, 14 (mod28) n(21n + 1)/2 (3n + 1)(7n + 2)/2 
8. n X 0, ?4, ?5, ?9, 14 (mod28) n(21n + 11)/2 (3n + 2)(7n + 1)/2 

Observe that 5 in Table 2 can be simplified to give the right-hand side 

1 + X + E [x(3n-1)' + x(3n+l)2] (mod2). 
n=1 
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In our search for new (mod 2) congruences, all possible residue classes were tried 
for moduli up to 16 as well as symmetrically placed classes for moduli up to 30. We 
should observe that many of the results of this paper can be expressed alternatively 
in the language of partitions in an obvious way, but we have not done this in this 
paper. 

The method of proving the results in Table 2 will be illustrated by proving identity 
3. 

Proof. From [5, p. 284], we have the congruence 
00 00 

(3) H2(1 -x, )(1- =1+2,(-i) 1 (mod2), 
n=1 n=1 

which can sometimes be used to invert a product (mod 2), since, in the product on 
the left, each odd exponent occurs twice and each even exponent once. In the present 
case we have the following (mod 2) identity (in which the reciprocal product on the 
left generates partitions whose parts are the integers in the specified residue classes 
and the product on the right generates the excess of the partitions with an even 
number of distinct parts over the partitions with an odd number of distinct parts [5, 
p. 287]): 

00 00 

(4) H (1 xn)- (1-n) (mod2). 
n=1 n=1 

n-?1, ?3, ?4,5(mod1O) n-=O, ?1, +2, +3,5(mod1O) 

(Here the modulus is even, so in the cross multiplication the odd exponents + 1, ? 3, 
and 5 (mod 10) occur twice and the even exponents 0, ? 2, and + 4 occur once, as 
they should.) 

To expand the product on the right we use the following result [4, p. 287] (see [3] 
for the history of the general product from which (5) was derived): 

00 

(5) H (1 - x E x(3n2+n)M/2(x-3kn - x3kn+k) 
neS1 -00 

where M and k are integers such that 0 < 2k < M and 
S1 = {n E N: nn0, +k, ?(M-2k), ?(M-k), M (mod2M)}. 

The (mod 2) result follows from (4) and (5) with M = 5 and k = 2. R 
Note that the (mod 2) congruence in (3) can also be obtained immediately from 

the formula of Euler [5, p. 277, (19.4.7)] 
00 

ft (1 + xn)(1 - X2n-1) 1 
n=1 

3. New Identities and Associated Parity Results. The remainder of this paper will 
be devoted to proving some parity results of a particularly simple form, which are 
derived from identities similar to theta function identities. 

THEOREM 1. 
00 00 

(a) t (1 - n) = 1 + E (-i)'(xX2 ? x2n2) 

n i(4,6, 8,10) (mod 32) n= 

(b) ft (1 - n = (-i)n((X2n2 -1 
- 

xn21) 
n=1 n=1 

no (2,8,12,14) (mod32) 
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Proof. (a) Rewriting (3), we obtain 
00 00 

(6) IH (1 - xn)(1 - X2n-1) = 1 ? 2 (-1)nx2 
n=l n=1 

Also, recall the familiar identity [5, p. 284] 
00 00 

(7) H1 (1 - xn) = E (-l)nX(3n2+n)/2 
n=1 -00 

If we replace x by x2 in (6) and add the resulting identity to (6), we obtain 
00 

1 ? E (-i)n(xn2 + X2n2) 

n=1 
00 ~~~~~~~~~00 

2L 11(1 xn)(1 - X2n1) + H (1 - X2n)(1 _ X2n-1)(1 + X2n-1) n=l n=l 

(1 - x2n-1){ H (1 - xn) + 2 [i (- )n] 
n=l n=l n=l 

which by (7) equals 
100 00 2 

- (1 X2n-1) ( linX(3n2+ n)/2 + j (3n +n)/2 (3n +n)/2 
n=l H- -(1 

Thus, we have 
00 

1 + E (-i)n(xn2 + X2n2) 

(8) 1 
00 00 

J 2 H (1 - X2n 1) _ (_) [1 + (_1)(3n2+n)/2 X(3n2?n)/2 
n=1 00 

Now (3n2 + n)/2 is even when n 0,1 (mod 4) and odd when n 2,3 (mod 4). 
Thus, the right-hand side becomes 

00 00 

H (1 - X2n-1) E (_1)nx(3n2+n)/2. 
n=1 -00 

n-O, 1 (mod 4) 

Replacing n by 4n and 4n + 1 in the summation, we obtain 
00 00 

17 (1 - X2n-1) E (X24n2+2n _ x24n2+14n+2) 
n=1 -00 

which, by (5) with M = 16, k = 2, gives 
00 00 

fr (1 -x2n-1) ft (1 - Xn). 
n=l n=l 

n--O, +2, +12, +14,16(mod32) 

(b) If we replace x by x2 in (6) and subtract (6) from the resulting identity, we 
obtain 

00 

171 (-l)n(X2n2-1 - 2_1 

n=1 

100 1 00 
= - (1 X2n-1) H1 (1 _ x2n)(1 + X2n-1) H-1 (1 - X 

n= - 4n=1 n=l 

= 2xF (1 _X2n-1) fj [1 _-(_X) nj _ n (1 -Xn). 



PARITY RESULTS FOR CERTAIN PARTITION FUNCTIONS 33 

As in (8) we have 

2x (1 - X2n- 1) (1n 
[( 

)(3n2n)/2 
1 (3n2+ )/2 

n=1 - X ~ 'JL' - IJX' 

100 00 

= - 171 (1 - x2n-1) E (_1)n+lX(3n2+n)/2 
X n=- -00 

n 2, 3 (mod 4) 

Replacing n by 4n + 2 and 4n + 3 in the summation, we obtain 
00 00 

1H7 (1 -x2n-1) E (x24n2+38n+14 - x24n2+26n+6 
n=l _-00 

which, using (5) with M = 16 and k = 6, equals 
00 00 

H 

(1 - x2n-1) ft (1-nX), 
n=1 n=1 

n-O, ?4, +6, +10,16(mod32) 

where n was replaced by n - 1 in the first sum. Z1 

COROLLARY 1. 
00 00 

(a) H (1-x)+x H (1 -xn) 
n=1 n=1 

ng ?(4,6, 8,10) (mod32) nX ?(2,8,12,14) (mod32) 

00 ~~~~~00 
= 1 + 2 E (_-1)nX2n = JJ (1 - X2n)(1 -X4n-2) 

n=1 n=1 

00 ~ 0000 
(b) (1 -xn)x = H1 - (1 xn) 

n=l n=l 
n (4, 6, 8,10) (mod362) n (2,(8,12,14) (mod32) 

=1 + 2 E (-1)nXn 
2 

nj (1 - Xn,(1 -x2n-1). 
n=l n=l 

oo 

(C) W- (1 - X(n))-1 
n=l 

n*-O, ?2, +12, +14,16(mod32) 

-x 1 xn)-1. 

n=l 
n 0, ?4, + 6, ? 10, 16 (mod 32) 

Proof. (a) The first equality follows from Theorems 1(a) and 1(b). The second 
equality is (6) with x replaced by x2. 

(b) The first equality follows from Theorems 1(a) and 1(b). The second is (6). 
(c) This equation follows from Corollary 1(b). El 

THEOpREM 2. 
f- 00 

(a) ) (1 _X)1 1 + E (Xn + x2n 2) (mod2). 
n=l n=l 

n0, +2, +12, +14,16(mod32) 
ft 00 

(b) _ (1 _x)1 _ (xn2' ? x2n21) (mod 2). 
n=1 n=l 

n#O, +4, +6, +10,16(mod32) 
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00 

(c) H (1 - X)1 
n=l 

n-0, ?2, +12, +14,16 (mod32) 

oo 

+x F1 (1- xn)-1 1 (mod2). 
n-1 

n-0, ?4, ?6, ?10,16 (mod32) 

Proof. (a) From Theorem 1(a) we have 

00 00 

1? + S(xn+ 2x2n2) H (1 - Xn) 
n=1 n-1 

n~0 ?19 ?69 897,8(modl62) 
00 0 

= H (1 - X2n-1) f (1 - X2n) 

n=1 n=l 
n--O. + 1, +69 + 79 8 (mod 16) 

= F1 (1 -X n-)1 F 1 X 2n )- 
n=l n=l 

n#O, +1, +6,.?7,8(modl6) 

oo 

f1 (1 - X)-1(mod 2), 
n=l 

n#0, ?2, +12, +14, 16 (mod32) 

using the (mod 2) reciprocation method derived from (3). 
(b) From Theorem 1(b) we have 

00 00 

x ( X 2 - 1+ X2 )X-f (1-X n) 

n= n n=l 
n#0 ?(2,8,12 ,14)(mod 32) 

00 0 H (1 - X2n-1) f (1 - X2n) 
n=1 n=l 

n-0O ?2, ?3, ?5, 8(modl6) 

00 

- H (1 - X ) 1 (1- _ X2n1 
n nln1 

n #, ?4, +6, ? 10, 16 (mod 32) 

(c) This result follows from the second equality of Corollary 1(c), dividing first by 
the product Hn? 1(1 -x 2n-1). 0 

THEOREM 3. 

00 00 

(a) __ (1 xn) 1+ E (-)n(Xn2?+ X3n? 2 

n=l n=1 
ng ?(2,4,5,6,7,8) (mod24) 

00 00 

(b) H1 (1-nx) = E (_1)n(x3n2-1 - xn21) 

n=1 n=1 
ng ?(1,4,6, 8,10, 11) (mod 24) 
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Proof. (a) If in (3) we replace x by X3 and add the resulting identity to (3), we 
obtain 

1 + E (-1)n(Xn2 + X3n? 2 

n=1 

1Ii1 
(1 - x2n-1)2(1 - 

X2n) + 

fi 
(1 

- X6n-3)2(1 - 
X6n) 

nl n=l 

= 2 J7J(1 -x6n-1 (1 - x6n-5)2(1 - x6n-3)( - x6n-1)2(l X6n-4) 
n=l n=l 

00 

x (1 - x6n-2)(1 _ X6n) + 1H (1 - X6n-3)(1 - x6n)j. 
n=1 

Using (5) with M = 3, k = 1 on the first product inside the bracket, we get 

H(1 - xn-) E (X(n_)/ _ X(9n + 9n +2)/2 ) + n [1 -(X3)n]) 
n= 00 n= 

Now, replacing n by -n in the first sum and using (7) gives 

00~~~~~~~~~~~~~~~0 H (1 - x~n3 E (X(n+)/ _ (9n +9n+2)/2) + E (_,)nX(923)2 
2n=l 0 - 00 

10 x 0n) 00 

- 2 171(1 - [i +(-1)n]x(9n 2+3n)/2 - E(9n2+9n+2)/2) 
n =l1 -00 -00 

If we separate the indices of the two sums into even and odd values, the first sum is 
O when n is odd, and in the second sum, if we write 

(9) f(n) = (9n2 9n +2)/2, then f(2n)=f(-2n - 1)= 18n2 9n + 1, 
we obtain 

00 00 

17 (1 - X6n-3) E (x18n 2+ 3n _ X18n2+9n+1). 
n=1 -00 

Thus, using (5) with M = 12, k = 1 we have 
00 00 

rH (1 - X6n-3) H (1 - Xn). 
n=l n=1 

n-0, ?1, +10, ?11, 12 (mod24) 

(b) If we replace x by X3 in (3) and subtract (3) from the resulting identity, we 
obtain 

00 

E (-l)n(X3n 2 -1 xn2-1) 

n=1 

00 ~~~~~~~~~~00 

I-[H(1 -x6n-3)2(1 - 

6) 

- H 
(1 - X2n1)2(1 - Xn) 

=- ] H(1 _x6n-3 (1 - X6n3)(1 - X6n 
x n=l n=l 

00 

- H (1 - X6n-5)2(1 - X6n-3)(1 - X6n-1)2 n=1 

X (1 - X6n-4)(1 - x6n-2)(1 - X6n)] 
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As in part (a), we can write this expression as 
00 00 

= 1 r (1 _ X6n-3 -1) n("+)/ _ ((9n2+3n)/2 
2 

(92+n2/) 2x nX 1: ~~~~~~~(x (9n ?3n)/2 -_X(9n +?9n?+2)/2) 
- n =j1 -1 -o00 

1 29000 171 (1 --X6n-3 - - r- , n _ (9n2+3n)/2 + I (9n?9n+2)/2 
- n=1 ( -oo -00 

Separating the indices of the two sums into even and odd values, we find the first 
sum is 0 when n is even, and in the second sum, using (9), we obtain 

00 00 

17 (1 - x6n-3 ) - (xl8n2+9n _ X18n2+21n+5) 

n=1 -00 

Replacing n by -n in the first sum and using (5) with M = 12, k = 5, we have 
00 00 

TJ (i - X6n-3) rI(1 - Xn). C 
n=1 n=1 

n-0, ?2, +5, ?7,12 (mod24) 

COROLLARY 2. 
OQ 00 

(a) If (1-x)+x HI (1- xn) 
n=l n=l 

na ?(2,4,5,6,7,8) (mod24) nW ?(1,4,6,8, 10,11) (mod24) 

00 00 

= 1 + 2 n (-i)x3n 2= ]7 (1 - X3n)(1 - x6n-3 
n=1 n=1 

(b) ft (1-xn)-x ft (1-xn) 
n=l n=l 

n +(2,4,5,6,7,8) (mod24) n +(1,4,6,8,10,11) (mod24) 

00 00 

= 1 + 2 E (-1) xn2 = H| (1 - xn)(1 X2n-1)- 
n=1 n=1 

(C) H (1- X)1 - X H1 (1 - Xn)-1 1 
nES1 nES2 

where 

S1 = {n E N: n ?(1,2,3,4,52,6,72,8,9,11) (mod24)} 

and 

S2 = {n E N: n ?(12,3,4,5,6,7,8,9,1O,112) (mod24)}. 

Proof. (a), (b) These identities follow from (6) and Theorems 3(a) and 3(b). 
(c) This follows from Corollary 2(b) by dividing through first by ITOH1(l -X) 

and then by Hn1(1 - x2n-1). [ 

Remark. Corollary 2(c) can also be proved by separating the index values in the 
sum on the right side of (7) into the even and odd forms 2n and -2n - 1. Thus, 

00 00 00 H (1 - Xn) = E X6n +n - X r X6n2+5n 

n=1 -00 -00 

00 00 

- E (1- xn) H. (1 + xn) 
n=1 n=1 

n--0 (mod 12) n 5 (mod 12) 

QO 00 

-x t (1 -_x ) ft (1 + xn), 
n=1 n=1 

n0 (modA l2) n-+ 1 ( mod l27) 
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using the formula [5, p. 283] 
00 00 

E x = 171 (1 - x2rn)(1 + x2rn-rs)( + x 2rn-r-s). 
-00 n=1 

Dividing through by H' 1(1 - xn) gives 

n nln= 

-X I (1 + Xn)/ rl (1 - Xn)= 1 
[n 5 (mod 12) n( 0 (mod 1 2) 

-x iFi (1?+Xn)/ H1 (1- =n1. 

The proof is completed by canceling the numerators of the two fractions into the 

denominator factor 
00 

Hl (1 - Xn) 
n=l 

n-+ 2 (mod 12) 

00 00 ~~~~~~~~~~~~~~~00 
= r (1- n) H (1- f (- Xn) H (1 + xn) 

n=1 n=1 n=1 
n- 2 (mod 24) n-+ 5 (mod l2) n + 5 (mod 12) 

00 00 ~~~~~~~~~~~~~~00 
= H1 (1 + xn) (1 ) X (- Xn) H (1-xn). 

n=1 n=1 n=1 
n- 1 (mod 12) n-+ 1 (mod 12) n-- 1O (mod 24) 

Other more complicated identities of this kind can be derived from (7) by separating 
the indices on the right side into more than two classes. 

THEOREM 4. 
00 00 

(a) H1 (1- 1 ? E (x2 ? x~ n ) (mod2). 
n=l n=l 

n O, _ 5 (mod 12) 

(b) 17 (1 - n)1 _, (xn21 ? x3n21) (mod 2). 
n=l n=l 

n 0,+1(mod12) 
M 

(IS) XX tXfW NA X M N- _ xxAY 
n=1~~~~~~~ 

n#O, ?5(modl2) nO0, +1(modl2) 

Proof. (a) From Theorem 3(a) and (3) we have 

1+ , (X n2 + X3n 2) 
= lH (1 - Xn) 

00 00 

- rl ~~~~~~~~~(1 -Xn)-1 = r (1 -Xn)-1 
____ ~~~ ~~~n=1 (x~1 

n 8?+ (1, 2, 3, 4, 6, 8, 9,10,11) (mod 24) n nO, ?5(mod12) 

where we have used in the reciprocation of the infinite product the fact that 

1 - X24n +1-(1 -xl2n ? 5)2 = (1 - X24n ? 5)2(l _ X24n ? 7)2 (mod 2). 
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(b) This follows from Theorems 4(a) and 3(c). 
(c) This follows from Theorems 4(a) and (b) or Corollary 2(c), using (mod 2) 

calculations like those in the proof of Theorem 4(a). El 
In conclusion, we would like to thank Michael Filaseta for his comments about 

congruence (3). Also we would like to express our appreciation to George Andrews 
for sending us proofs of Theorems 2 and 4, and Michael Hirschhorn for sending us 
proofs of the same theorems and several other (mod 2) results. The methods used in 
these proofs were different from our own. 
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